

FOREWORD
�Work can and should be an ennobling experience.� So begins Agile Software

Development with Scrum, one of the sanest and most practical books on agile software
processes.

Software process is one of the hot topics of this decade. We've seen processes like
XP, Adaptive, Crystal Clear, RUP, etc. We've seen the formation of the Agile Alliance; a
group of experts dedicated to the promotion of people-oriented software processes that
work without getting in the way. We've seen the creation of a commercial product based
upon nothing but process. And we've seen dozens, if not hundreds, of books, lectures,
classes, and articles extolling the virtues of one process or another.

In the midst of this hubbub, Ken Schwaber and Mike Beedle bring us Scrum.
Scrum is an agile software development method with a proven track record. In this book
you will read how the method was created, and some stories of the projects that made use
of it. You'll read about how the authors battled to create a method that helped them get
projects done in the presence of rapidly changing requirements. You'll read about what
worked and what didn't; the problems they had, and the way they solved them. You'll
read about how you can adapt their work to your particular needs.

Mike and Ken are uniquely qualified to author this book. Both have been active in
the software industry for decades. Mike has been a manager of many software projects,
and runs a successful software consultancy. Mike has fought the process battles many
times. He knows what works, and what doesn't. Ken has been involved with software
process for a large portion of his career. He defined and built a software product that
automated heavyweight software processes and created the methodology automation
industry. From this experience he learned that such processes were not amenable to
creating software in real market environments. But that's a story you can read in the book.
Ken is a well-known management consultant who has helped dozens of project teams
reach their goals.

This is a book for executives, software managers, project leaders, and
programmers. It describes, in no uncertain terms, how each of these roles can apply the
simple but effective principles and techniques of Scrum.

If you have to get a project done, and you want to use a process that helps you
when you need help, and gets out of the way when you don't, then you should read this
book. It is liable to be the catalyst of an ennobling experience.

Robert C. Martin

FOREWORD
When I finished at my grammar school at 18 I spent a year working in industry

before going to University. My career direction at the time was electrical engineering,
and in my year I learned a great deal about the engineering approach to building things.
When I left university and entered the world of software development I was attracted to
graphical modeling methodologies, because they helped put engineering discipline into
software development.

At the heart of the engineering approach is a separation of design and
construction, where construction is the larger part of the job and is a predictable process.
Over time I began to understand that this separation wasn�t really useful for my software
work. Doing the separation required too many tasks that didn�t seem to really contribute
to producing software. Furthermore the construction part of the task wasn�t really that
predictable, and the design portion was much longer than the engineering approach
assumed.

In Chapter 2 Ken describes a particular moment that brought this question home
for him, when he spend time with DuPont�s process engineering experts. There he
learned the difference between defined and empirical processes, and realized that his
software development needed to be controlled using an empirical approach.

We aren�t the only ones who�ve been asking these questions about the nature of
software development. Over the last few years there�s been increasing activity in the area
of what is now called Agile Methodologies, a new breed of software processes which are
based on an empirical approach to controlling a project.

And software projects do need to be controlled. For many people, moving away
from defined processes means descending into chaos. What Ken learned at DuPont was
that a process can still be controlled even if it can�t be defined. What Ken and Mike have
written here is a book that shows you one way of doing that. Practices such as sprints,
scrum meetings, and backlogs are techniques that many people using Scrum have used to
control projects in chaotic circumstances.

In the future, we�ll see more need for Scrum and the future developments built
upon it. Software development has always been difficult to control. Recent studies
indicate that the average project takes twice as long to do as its initial plans. At the heart
of Scrum is the notion that if you try to control an empirical process with a system
designed for defined processes, you are doomed to fail. It�s becoming increasingly
apparent that a large proportion of software projects are empirical in nature and thus need
a process like Scrum. If you�re running a project, or buying software, with difficult and
uncertain requirements in a changing business world, these are the kinds of techniques
you need.

Martin Fowler

SECTION 2: GET READY FOR SCRUM!
Scrum is different. Work feels different. Management feels
different. Under Scrum, work becomes straightforward,
relevant, and productive.

Scrum Is Different
I�ve spent a good part of my professional life building technology products and

systems. I�ve had successes, and I�ve certainly had failures. I think I�m not alone when I
say that most systems development projects are difficult, and I suspect harder than they
need to be. I remember a project when I worked with a plant manager at a
pharmaceutical company. Together, he and I implemented a complicated material
requirements planning system. As we were about to successfully complete the project, I
congratulated him and told him that he could make a lot of money helping other
companies implement similar systems. He looked at me aghast, and said, �I�ll never go
through something this gruesome again. I can�t wait to go back to just managing the
business!� His observation was one of many that led me to think that something was
wrong, that there must be a more straightforward way to build and implement systems.

Every project is different. The technology, the requirements, and the people
involved are different every time. I�ve studied different approaches to project
management in an effort to make my life easier and the teams more productive despite
their differences. I�ve tried new development environments, modeling tools,
technologies, methodologies, people approaches, everything and anything to improve the
process of building a system. I�ve found some things that improved my life, like always
using the best engineers, forming cross-functional teams, and facilitating long design
sessions around white boards. These tactics all help, but without Scrum these projects
were all eventually overwhelmed by the complexity inherent in systems projects.

I used to place my hopes on commercially available methodologies. They contain
templates of work that has built systems previously. They therefore contain the tried and
true processes that other professionals have successfully used. Companies that build
software for a living usually sell methodologies. I always figured that for this very
reason, they must all be really good. Methodologies are like cookbooks; follow their
recipes and a successful system will result. Some methodologies are modest in scope and
depth, while others contain literally thousands of pieces of work, or tasks, tied together
into templates. Each template is appropriate for a specific type of development project. I
worked with these methodologies for years, trying to improve them.

Over the years, methodologies added definition to my projects. I knew what to do
when and could assign people to the work. I felt like I was more in control and each
project had a lot to show for it. Unfortunately, my success rate did not go up. One
company that I worked at cancelled a major project after two years. I toured the project
space not long after the its cancellation and found a ghost town. There were hundreds of
cubicles full of workstations and books of standards, training materials, requirements
manuals, and design documents. Unfortunately, this project hadn�t been successful. The

project never even reached the software construction phase of the project, so no
functionality was even delivered.

As I mentioned earlier, I ran a software company in the early 1990�s that
developed and licensed a process management product called MATE. Our largest
customers were Coopers & Lybrand and IBM, and these companies wanted us to employ
their methodologies to build MATE. I gave it a shot and was thoroughly displeased with
the results. At the time, my company�s requirements were always changing and we were
working with fairly new technologies. It looked like the methodologies should help, but
instead they just got in our way, decreased our flexibility, and generally slowed us down.

I wanted to understand the reason that my customers� methodologies didn�t work
for my company, so I brought several systems development methodologies to process
theory experts at the DuPont Experimental Station in 1995. These experts, led by
Babatunde �Tunde� Ogannaike, were the most highly respected theorists in industrial
process control. They knew process control inside and out. Some of them even taught the
subject at universities. They had all been brought in by DuPont to automate the entire
product flow, from forecasts and orders to product delivery.

They inspected the systems development processes that I brought them. I have
rarely provided a group with so much laughter. They were amazed and appalled that my
industry, systems development, was trying to do its work using a completely
inappropriate process control model. They said systems development had so much
complexity and unpredictability that it had to be managed by a process control model
they referred to as �empirical.� They said that this was nothing new, and that all complex
processes that weren�t completely understood required the empirical model. They helped
me go through a book that is the Bible of industrial process control theory, Process
Dynamics, Modeling and Control 1 to understand why I was off track.

In a nutshell, there are two major approaches to controlling all processes. The
�defined� process control model requires that every piece of work be completely
understood. Given a well-defined set of inputs, the same outputs are generated every
time. A defined process can be started and allowed to run until completion, with the same
results every time. Tunde said that the methodologies that I showed him attempted to use
the defined model, but that none of the processes or tasks was defined in enough detail to
provide repeatability and predictability. Tunde said that my business was an intellectually
intensive business that required too much thinking and creativity to be a good candidate
for the defined approach. He theorized that my industry�s application of the defined
methodologies must have resulted in a lot of surprises, loss of control, and incomplete or
just wrong products. He was particularly amused that the tasks were linked together with
dependencies, as though they could predictably start and finish just like a well defined
industrial process.

Tunde told me that the empirical model of process control, on the other hand,
expects the unexpected. Because the processes are imperfectly defined, generate
unpredictable and unrepeatable outputs, and every project is different control is exercised
through frequent inspection and adaptation. The experts at DuPont recommended that I
study this model and consider its application to the process of building systems.

1 Process Dynamics, Modeling and Control, Babatunde A Ogunnaike and W. Harmon Ray,
Oxford University Press, 1994.

During my visit to DuPont, I experienced a true epiphany. Suddenly, something in
me clicked and I realized why everyone in my industry had such problems building
systems. I realized why the industry was in such trouble and had such a poor reputation.
We were wasting our time trying to control our work by thinking we had an assembly
line when the only proper control was frequent and first-hand inspection, followed by
immediate adjustments.

Based on this insight, I have since formulated with others the Scrum process for
developing complex products, particularly software systems. Scrum is based on the
empirical process control model. For those interested, more details on why Scrum works
are presented in Section 5 (Why Scrum?) and Section 6 (Why Does Scrum Work?).

Scrum is a way of doing things that is completely different from what most people

in the software and product development industry are used to. All of the assumptions,
mechanisms, and ways of looking at things are so different that a new way of thinking
evolves as you begin to use Scrum. Scrum feels and looks different because of it rests
upon an empirical basis. Less time is spent trying to plan and define tasks, and less time
is spent on management reports. More time is spent with the project team. Most people
really understand Scrum only when they begin to use it. A light bulb goes off when they
experience its simplicity and productivity. They realize how inappropriate more
traditional models of development process really are for this industry.

The following case study covers a complete implementation of Scrum. In it, I
describe working closely with a team to build a product while using the Scrum process.
In this example, I made decisions and encouraged the team to act differently than they
were used to acting. I taught them by example to approach their work in an entirely
different way. By the time we had completed the first Sprint, the team was already
behaving differently. They had seen Scrum work, and now they were Scrum users. They
had come to embody the values integral to Scrum, such as empiricism, self-organization,
and action.

As you read the case study, think about what is missing from it. There is no
formal project planning. There is no Pert chart. There are no roles and individual
assignments. Notice how the team is able to get on with its work and build valuable
product increments anyway. Notice the team transform from a dispirited group of
individuals waiting for instructions into a team that takes the initiative and acts. The team
operates within the permission it has and does the best it can. By the end of the first
Sprint, the team had adopted a completely new set of values and begun to act unlike any
other team at the organization.

A Noisy Project
The project was to build a middleware business object server and its

accompanying business objects. A large financial institution wanted to develop the
product to connect its online transactions to its legacy databases. The institution needed
to handle increasing transaction volumes, to standardize database access, and to carry out
the implementation of new technologies such as telephone, wireless, and handheld input
devices. This technology was all devastatingly complicated, including choices and
learning curves for object technology, transaction management, hardware, operating

systems, and development environments. To complicate matters, this was a technically
sophisticated company, so proponents for various alternatives to each technology choice
were numerous and vociferous. Furthermore, team members were working at multiple
locations, and the team therefore needed to use a multi-site development environment
technology. It had chosen to use ClearCase code management software, but had not yet
begun to do so.

The project was truly hellish. A development team had been chartered and
charged. When I first began working with the team, it had been in existence for four
months, but had not built any product. It was waiting for its own budget. It was waiting
for funding for new servers, for the last team members to be assigned, for ClearCase
Enterprise to be licensed, and for someone who knew how to use ClearCase to be hired.

To begin implementing Scrum, I started holding Daily Scrum meetings. These
meetings are supposed to be quick status updates. This was not the case at these Daily
Scrums. The first meeting took three hours, rather than the customary fifteen minutes.
Everyone was completely dispirited and demoralized. Team members talked not about
what they were doing, but about what was preventing them from doing anything. Many
people complained that management didn�t support the project, and everyone was upset
that the budget hadn�t been formalized. Without a budget, the team couldn�t order servers
or license ClearCase. For that matter, the team couldn�t attract new team members, since
it looked as though it was going nowhere fast. The team was without funding, without a
sponsor, and without the tools that it needed.

Cut Through the Noise By Taking Action
One of the fundamental principles of Scrum is �the art of the possible.� That is,

Scrum instructs teams not to dwell on what can�t be done, but to think about what can be
done. It is important to focus on what can be done and how the problem can be solved
with the available resources. This team had a name, a scope, and definition, and it was
staffed with some really solid engineers, all of whom had workstations and access to a lot
of software. I asked the team members what they were able to do with the resources that
they already had. I also asked the team whether it believed that the problem it was trying
to solve was important to the organization.

The team confirmed that the problem was real and that it was eager to tackle it.
Some team members were aware that a customer service project was being held up by the
very problem that they were supposed to solve. The customer service project was
supposed to implement access to the legacy databases, but was unable to because this
team had not yet built the middleware server that would handle legacy database access.
Clearly, this team had been chartered because of a critical organizational need, and it had
an important mission to accomplish. Until the team could get moving, other projects
would continue to be held up

The team quickly identified a core set of transactions that the customer service
project needed it to enable. The team members felt that they had enough skills to build a
middleware object server to implement these transactions, so long as someone from the
customer service team worked with them as a domain expert. They felt that they knew
AIX, Tuxedo, and CORBA well enough to use that technology to implement the solution.
They �borrowed� an RS6000 server from the server room to develop and prototype their
work. The project manager, Herb, presented this plan of attack to his management. Since

this effort required no additional funding and no administrative action, Herb was
authorized to proceed. I got together with the team and devised a goal for the first Sprint.
The Sprint goal was:

Sprint Goal: to provide a standardized middleware mechanism for the identified
customer service transactions to access backend databases.

The team figured out the work they would have to do to meet the Sprint goal. The
following tasks came up:

• Map the transaction elements to back-end database tables;
• Write a business object in C++ to handle transactions via defined methods and

interfaces.
• Wrap the C++ in a CORBA wrapper;
• Use Tuxedo for all queueing, messaging, and transaction management; and,
• Measure the transaction performance to determine whether scalability requirements

could be met

Self-Organization
After identifying these objectives, the team began the Sprint. Since the team was

using familiar technology, there were no major technological problems during the Sprint.
However, two team members were at a remote site. Because the team didn�t have
enterprise ClearCase, it couldn�t readily do multi-site code management. This problem
was resolved by partitioning responsibilities between the two sites, and verbally
coordinating whenever either site had to use code under the other�s control.

The team met and decided who would do what work. When one team member wanted
to work with the Tuxedo expert to learn the product, they figured out how the rest of the
team could pick up the slack. As the team started doing the work, it would meet
frequently on its own to design the product and further identify and parse the work. The
team did this on its own. They knew the Sprint Goal and they knew their commitment.
The team was figuring out how to live up to its commitment.

Respond Empirically
After ten days, the team started to feel like it was going to fail. The technology

was all up and working, it had figured out the Corba wrapper, and it had accessed the
appropriate databases. However, team members felt that they couldn�t get the entire
selected customer service transaction set mapped and linked to the database within the
Sprint. The transaction data was too complicated and involved too many tables and
indices for the mapping to be completed in thirty days. The team had incorrectly
anticipated the complexity and the scope of the work it had assigned itself. But had it
failed? Not in the eyes of Scrum. Working with a host of difficult technologies and
unknown transactions, the team had built the development environment, put up a
middleware server using Tuxedo, and had started implementing the customer service
transactions. It was doing great. The team had done the best that it could do, rather than
sitting around and doing nothing.

Again, I focused the team on the art of the possible. What could it do within the
Sprint to meet the goal? The goal wasn�t to complete the entire transaction set, even
though that was what the team had expected to be able to do. The goal was to prove the
viability of a middleware object server providing database access to the customer service
transaction set. No one even knew whether management would approve and fund this
approach. The team quickly identified that they could address a reduced scope of
transaction data elements involving fewer tables and indices, and then proceeded to
automate this.

Daily Visibility Into the Project
On the fourteenth day of the Sprint I held our Daily Scrum. When it came to

Tom�s turn to report, he indicated that a Senior-Vice President, Lou, had instructed him
to build something that was not within the scope of work for the Sprint. Consequently, he
had been unable to do the work that the rest of the team had expected of him, though he
would try to catch up. I immediately went to Lou�s office and asked what was up. Lou
had been offsite and had learned that a potential customer was interested in additional
functionality. He had decided to help the team out by instructing one of its members to
start developing that functionality. Lou hadn�t been at all of the Scrum training, so he
didn�t know that interrupting a Sprint is almost always more counterproductive than it is
helpful. Lou didn�t know that the team was protected during the Sprint from all of the
chaos, complexity, and uncertainty. Lou said that if he saw a $100 bill on the ground on
the way to the train, he would bend over and pick it up, and that he didn�t see how this
situation was any different. I told Lou that, in the greater scheme of things, his family
would probably appreciate his getting home on time more than the $100. I explained to
Lou the importance of not disrupting a Sprint, and he agreed to refrain from doing so in
the future. By the end of the Sprint, the feature that Lou had wanted to be demonstrated
was no longer on the radar of this potential customer anyway. Apparently, it had only
been of interest the day that Lou was at the offsite.

Incremental Product Delivery
At the End-of-Sprint demonstration, the team really impressed management with

its pragmatism. With only the resources it had on hand, it had proven that its approach
was technically feasible. In fact, it had put the technology to use for customer service
functionality. Although a thorough requirements study might have uncovered better
technical approaches, the team had used available resources to solve the problem both for
the customer service team and for the company as a whole. The team had run
performance measures on its solution and proven that the approach could handle the
expected transaction volumes. In an online session, it showed management part of the
transaction going through the middleware to the databases, retrieving and displaying
selected data, and doing so with performance and scalability that could be sustained.

The team presented an increment of product that was successful, could be
discussed, and could be built upon. If the team had not gotten its act together as well as it
did, the organization as a whole would have been thirty days closer to a transaction
volume meltdown. Instead, because of their efforts and initiative, the organization had
something that worked and that could be modified and built upon. Incremental product
delivery can be very powerful, providing an organization with real progress in a short

period of time. Previously, the organization was wrapped around its spokes discussing
how to proceed.

The team had provided a starting point, a prototype that validated the approach
and could be built upon. The team quickly gained formal status and funding, and
eventually came up with a solution for legacy database access.

By using Scrum, the team was able to cut through the noise and start delivering

valuable product. Time that would have otherwise been wasted was spent working. The
team was able to focus itself and management was able to help the team stay focused.
The team continued for another year, building a general purpose middleware business
object server with access to specific databases. The team members then became
consultants to other organizations that used the middleware. As they consulted, they
spread Scrum..

In the next sections, I�ll describe the details of the Scrum practices that I implemented in
this case study so that you, also, can implement Scrum and manage Scrum projects.

